skip to Main Content

Increased IL-15 Production and Accumulation of Highly Differentiated CD8+ Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus.


Maximus Peto’s Commentary

These results appear to have some possible relevance to the effects of CMV in humans.


Increased IL-15 Production and Accumulation of Highly Differentiated CD8+ Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus.
Front Immunol. 2017 Jun 19;8:715.
Pangrazzi L, Naismith E, Meryk A, Keller M, Jenewein B, Trieb K, Grubeck-Loebenstein B
DOI: 10.3389/fimmu.2017.00715
PubMed publication date (edat): 7/5/2017

Abstract

Cytomegalovirus (CMV) has been described as a contributor to immunosenescence, thus exacerbating age-related diseases. In persons with latent CMV infection, the CD8+ T cell compartment is irreversibly changed, leading to the accumulation of highly differentiated virus-specific CD8+ T cells in the peripheral blood. The bone marrow (BM) has been shown to play a major role in the long-term survival of antigen-experienced T cells. Effector CD8+ T cells are preferentially maintained by the cytokine IL-15, the expression of which increases in old age. However, the impact of CMV on the phenotype of effector CD8+ T cells and on the production of T cell survival molecules in the BM is not yet known. We now show, using BM samples obtained from persons who underwent hip replacement surgery because of osteoarthrosis, that senescent CD8+ TEMRA cells with a bright expression of CD45RA and a high responsiveness to IL-15 accumulate in the BM of CMV-infected persons. A negative correlation was found between CMV antibody (Ab) titers in the serum and the expression of CD28 and IL-7Rα in CD8+[Formula: see text] cells. Increased IL-15 mRNA levels were observed in the BM of CMV+ compared to CMV- persons, being particularly high in old seropositive individuals. In summary, our results indicate that a BM environment rich in IL-15 may play an important role in the maintenance of highly differentiated CD8+ T cells generated after CMV infection.

PMID: 28674537
Free Full-Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474847/

Maximus Peto

Max Peto is a longevity researcher and founder of Long Life Labs. A biochemist by training, he studies the biochemistry of aging and longevity and has worked with research organizations such as SENS Research Foundation, Methuselah Foundation, BioAge Labs, Life Extension Foundation, and Ichor Therapeutics. His work at Long Life Labs is focused on empowering people to understand and manage the most critical factors for better health and longer life.

Free report on high blood pressure

The American Heart Association estimates more than 100 million Americans have high blood pressure, also known as “hypertension”. Learn more about the cause of high blood pressure and how you can reverse it in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Free longevity biomarker report

Biomarker levels predict the risk of early death—and we can change them! Learn about some important longevity biomarkers in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Free diabetes report

An estimated 50% of American adults have either prediabetes or type 2 diabetes. Learn more about the cause of type 2 diabetes, prediabetes, insulin resistance, and how to reverse them in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Back To Top