skip to Main Content

Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.


Maximus Peto’s Commentary

In this abstract, these authors note a previous publication of theirs, in which they reported a greater distance between type II fiber-associated satellite cells and capillaries in older vs. younger people. I don’t recall reporting on this observation, which may be relevant for a number of topics, including the aging circulatory system, muscle function and regeneration, sarcopenia, and possibly AGEs and the ECM (if changes in these are the cause of the increased distance between satellite cells and capillaries — just my brainstorming here).


Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.
Gerontology. 2017;63(1):91-100. Epub 2016 Oct 20.
Joanisse S, Nederveen JP, Snijders T, McKay BR, Parise G
DOI:
PubMed publication date (edat): 10/21/2016

Abstract

Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle’s ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults.

PMID: 27760421
Free Full-Text:

Maximus Peto

Max Peto is a longevity researcher and founder of Long Life Labs. A biochemist by training, he studies the biochemistry of aging and longevity and has worked with research organizations such as SENS Research Foundation, Methuselah Foundation, BioAge Labs, Life Extension Foundation, and Ichor Therapeutics. His work at Long Life Labs is focused on empowering people to understand and manage the most critical factors for better health and longer life.

Free report on high blood pressure

The American Heart Association estimates more than 100 million Americans have high blood pressure, also known as “hypertension”. Learn more about the cause of high blood pressure and how you can reverse it in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Free longevity biomarker report

Biomarker levels predict the risk of early death—and we can change them! Learn about some important longevity biomarkers in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Free diabetes report

An estimated 50% of American adults have either prediabetes or type 2 diabetes. Learn more about the cause of type 2 diabetes, prediabetes, insulin resistance, and how to reverse them in our free report.

Coming soon. We’ll send you the report as soon as it’s published.

*We do not share your email address with anyone.

Back To Top